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Abstract: Asp ergilius Jiavus is the major producer of
carcinogenic aflatoxijis in crops worldwide and is also
an important opportunistic human pathogen in
aspergillosis. The sexual state of this licteroihallic
fungus is described from crosses between strains of
the opposite mating t ype. Sexual reproduction
occurred between sexually compatible strains belong-
ing to different vegetative compatibility groups.
Multiple, mdehisccnt ascocarps containing asci and
ascospores formed within the pseudoparenchyntatotis
matrix of stromata, which places the fungus in genus
Pet roiny -e.s. The telcomorph of P. Jiavws could not be
distinguished from that of P. parasiticus (anarnorpli
= A. parasthcu,$), another allatoxin-producing spe-
cies, based on morphology of the sexual structures.
The two species can be separated by anamorph
morphology, mvcotoxin profile and molecular char-
acters.

Key words: aflatoxin, Aspeigilius aliiaeeus, Aspen
gillus parasiticus, heterothallism, I'etromyces all:iaceus,
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INTRODUCTION

Aspegillus Jiavu.s Link is the major producer of
aflatoxins worldwide in corn, peanuts, tree nuts,
cottonseed, spices and other crops. These polyke-
tide-derived niycotoxins are among the most carcino-
genic compounds known from nature and are also
acutely hepatotoxic as well as immunosuppressive
(Eaton and Groopman 1994, Turner et at 2003).
Aflatoxigenic strains of A. flavus generally produce
aflatoxin B 1 , the most toxic of the naturally occurring
aflatoxins (Cullen and Newberne 1994), and lesser
amounts of B9 (Horn et al 1996). Aflatoxjns are
highly regulated in human and animal food in more
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than 10() countries (van Edmond and Jonker 2005),
and commodities with aflatoxin concentrations that
exceed established limits either must he reprocessed
or destroyed. In regions of the world where aflatoxins
are not regulated, outbreaks of aflatoxicosis and
associated deaths in hittiiaii populations occur peri-
odically (Krishnamachani et al 1975, Lye el. al 1995,
Azziz-Bauuigartner et al 2005)

In addition to aflatoxiris A. Jiavus produces
another unrelated mycotoxin, cyclopiazonic acid
(CPA), an indol-tetramic acid that targets the liver,
kidneys and gastrointestinal tract in animals (Burdock
and Flamm 2000). Aflatoxins and CPA often coconta-
tiiinate agricultural products, and several of the
symptoms associated with turkey ''X'' disease in
poults that led to the discovery of aflatoxins in the
early 1960s can he attributed to CPA (Cole 1986).
Aspegiilus fiavus is also an important opportunistic
human pathogen in aspergillosis. The species is the
most common cause of aspergillosis involving skin,
oral mucosa and subcutaneous tissue and is second
only to A. fumigatus Fresen. in invasive aspergillosis
that includes the systemic infection of Immunocom-
promised patients (Hedayati et al 2007).

Aspergilius /iavus belongs to section Flavi, which
contains an assemblage of phylogenetically related
aflatoxin- and nonaflatoxin-producing species (Peter-
son 2008). One of the hallmarks of A. Jlavu.c
Populations is the extreme genetic diversity, as
reflected by differences in morphology and mvcotox-
in production and Cony 1993, Horn et al
1996) and by the large number of DNA fingerprint
groups and vegetative compatibility groups (VCG)
(Bayman and Cotty 1991, Horn and Greene 1995,
Wicklow et al 1998). The vegetative compatibility
system in fungi is determined by a series of het loci
whose alleles all must be identical for stable hyphal
fusions to occur (Leslie 1993). Vegetatively compat-
ible individuals often are grouped into VCG and in
aflatoxigenic fungi, most variation in morphology
and Inycotoxin production occurs among VCG, with
little variation occurring within a VCG (Bayman and
Cotty 1993, Horn et al 1996). Considerable genetic
diversity is also present in populations of A.
parasiticus Speare (Horn and Greene 1995, Horn
et al 1996, McAlpin et al 1998. Carbone et al 2007a),
a closely related aflatoxin-producing species from
section Fiavi that is most prevalent in peanuts. Both
A. flavus and A. parasilicus are heterothallic, with
individuals containing either a MAT]-] or MAT1-2
mating-type gene (Ramirez-Prado et al 2008). In A.
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T-itiE I. incidences of sexual state in Aspergillus Jiavus crosses between opposite mating types

MAT]-]	 MATI-2 '

NRRL
	 NRRL	 Number of sclerotia/

	
Number of sclerotia/
	

% with	 bearing

strain 
	

VCG	 strain 2	VCG	 stromata per slant'
	 stromata examined

	 ascocarps'	 ascocarps4"

300
300
300
440

386
300
308
300
300

47
300

601 ± 15
707 ± 81
633 ± 57
604 ± 34

I ±2
97 it 15

489 ± 85
117	 42
342 ± 2
392 ± 40

9±9
445 ± 35

10.0 ± 2.6
5.0 ± 1.0
4.3 ± 3.2
8.2 ± 7.0

	

29.1	 5.9

	

33.5	 5.9
33.0 ± 43)

	

49.2	 11.9

	

72.7	 4.0
52.3 ± 9.8

	

67.5	 26.2
79.3 ± 5.1

0

	

0.3	 0.6
0.7 ± 0.6

	

6.5	 4.9
12.5 ± 17.7
22.8 ± 2.6

	

28.7	 4.6
37.7 ± 13.3
50.3 ± 14.0

	

51.0	 10.4
66.2 ± 25.5
78.3 ± 5.8
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29526
	

52
	

29519
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Mating-type designations front 	 ci al (2008).
2 Strain numbers (NRRL) from Agricultural Research Service Culture Collection, Peoria, Illinois.
Vegetative compatibility groups based on Horn and Greene (1995).
Means ± s.d. (n = 3-5 culture slants).
Percentage of total number of sclerotia/stromata examined containing one of more ascocarps irrespective of the presence

of ascospores.
"Percentage of total number of sclerotia/stromata examined containing one or more ascospore-hearing ascocarps.

parasiticus, crosses between opposite mating types
led to the discovery of sexual reproduction and
genetic recombination (Horn et al 2009a). The
sexual state of A. parasitleus was similar to that of
Pet romce,c alliaceus Malioch & Cain (anamorph =
alliaceus Thom & Church), a nonaflatoxin-produc-
ing species from section Flavi, and therefore was
assigned to the same genus and described as P.
/mrasiticus B.W. Horn et al (2009b).

Because of the close relationship between A. flavus
and P. parasiticus, A. flavus strains of the opposite
niating type were crossed in an attempt to induce
6exual reproduction. The teleomorph associated with
1. flavus is formally described in this paper.

NIA FERLUS AND METHODS

St rains of 1. limos were obtained from soil anti peanut
seeds in a single peanut field in Terrell County, Georgia,
CS.\ (Horn and Greene 1995). Mating-type genes MAT]-]
and MATJ-2 were identified by Ramirez-Prado et al (2008)
and VCG were determined by Horn and Greene (1995)
(FABLE I). Aspergillus flavus strains of the opposite mating
t\ pc were paired on slants of mixed cereal agar (McAlpin
and Wicklow 2005) and slants were incubated 6-11 mo at
31) C in sealed plastic bags (Horn et al 2009a). Sclerotia/
',ttomata were harvested from slants anti examined for
a ..cocarp formation according to Horn et al (2009a).
,Specimens were sectioned and prepared for bright field.
(lilierential interference contrast and scanning electron
iniroscopv.ts described 1w horn et al (2009a. b). The

A.sJu'rg,'il/ns anamorphic state was examined front cultures
grown on Czapek agar and malt extract agar (Raper and
Fennell 1965).

TAXONOMY

Petromyces flavus B.W. Horn, I. Carbolic et G.G.
Moore, sp. iiov.

MvcoBank MB51291()	 FIGS. 1-8

Coloniae in agaro Ctapekii crescelites post 7 dies in
temperatura 25 C cliam 3.5-5.5 cm atqile in teinperatora
37 C 5.5-7.0 cm attingeiltes, veltitinae vel leniter flocco-
sac, cinereo-virides, saepe per sclerotia dominatae.
Sclerotia stromittaque globosa vel ellipsoidalia, 300-
1250 Inn, atro-biunnea vel atra, contcxtunl pseudopttr-
ench y ntaticum continentia. Ascocarpi 1-7, intra stromata
geniti, glohosi vel subglobosi vel irregulariter formati,
maturitate 150-630 .im, non ostiolati, peridio 9.8-
27.0 .ini crasso circumdati .Asc i glohosi vel stihglohosi,
19.0-30.0 X 16.5-26.5 pin, plerumqne ascosporas 8
continentes. Ascosporae uhiqite oblatae, sed in aspectu
frontali globosae vel late chlipsoidales 8.0-12.5 X 7.5-
12.0 itm, leniter tubercnlatae, cnsta tenui aequatoriali
praeditae, hyalinae vel 1tllide brunneae, gutta ohei un ica
Inagna continentes. Capitula conidialia uniseriata ye1
hiseriata, radiata el coltininaria, diansetro itsque ad
600 itni. Stipites proxinte sub vesictila 10-23 .ini lati,
longitudine 300-1200 inn, hvalini vel pallide hrunnei,
echinulati. Vesiculae glohosae vel sithglobosae, 15.))-
70.0 jim diam. Metulae 6.0-10.0 X 4.0-7.5 )tni. Phialides
6.0-12.0 X 3.0-4.5 Mm. Conidia globosa vel stihglobosa.
3M-60 jim, laevit \ .el leniter tSf)crata.
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Fius. 1-8. l'efroinyces/lavns. I. Scicrotia formed in culture. 2. Sectioned stiolna containing Seven ascocarps. 3. Cross section
of stronla with three ascocarps containing ascospores; arrowheads show peridia ot ascocarps. 4. Ascocarp peridioni Separating
stroinal matrix from ascocarp matrix Coiltitining asCoSpores. 5. Section of siroma showing outer peridiiiin and
pseudoparenchymatous tissue of matrix. 6. Aso containing ascospores. 7. ASCOSpOIeS containing single nil droplets. 8.
Ascospore showing finely tuberculate ornamentation and an equatorial ridge. 1, 3-5, 8 = SEM: 6 = bright field microscopy; 7
= differential interference contrast microscopy. Bars: 1, 2 = 400 gm; 3 = 100 pm; 4, 5 = 20 pm; 6, 7 = 10 pm; 8 = I pm.
Abbreviations: SF, stroinal peridiuin: SM, stiomal matrix; AP, ascocarp peridium: AM, ascocarp matrix.

	

Colonies on Czapek agar attaining 3.5-5.5 cm chiam	 en masse grayish green (29-30E4-6; Kornertip and

	

in 7 d at 25 C; growth at 37 C in 7 ci reaching 5.5—	 Wanscher 1978) at 14 d. Reverse light yellow brown.

	

7.0 ciii cliam. Colon y surface velvety to occasionally	 .Seleroiza (Fl(;. 1) and siromata similar in external

	

floccose, often dominated b y sclerotia. Conidial heads	 appearance, globose to ellipsoidal, (250—) 300-1250
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(-1400) pm, white becoming pink brown and finally
dark brown to black; inner matrix light to dark brown,
consisting of pseudoparencliymatoits tissue (FIG. 5).

Asrocars (FIGS. 2, 3) produced within stromata,
globose to suhglohose or irregularly shaped, non-
ostiolate, with white to light brown interior; each
stronia containing 1-7(-10) fertile ascocarps, 1-6(-12)
infertile ascocarps, or a combination of the two;
fertile ascoear/sc (110-) 150-630 (-660) pm (mean =

328 ± 103 pm, n = 151) X (80-) 100-540 (-570) pm

(mean = 253 ± 91 pm); infertile ascocars (40-)60-

210(-230) pm (mean = 118 ± 32 Inn, n = 86) X
(35-)30-175(-190) pm (mean = 95 ± 27 pm);
ascocarp peridiun ( FIG. 4) 9.8-27.0 pm thick, yellow
brown to red brown, consisting of compact layers of
irregular flattened cells. Asci (Fl(;. 6) globose to
subglobose, often containing eight inordinately
arranged ascospores but irregular numbers (1-6)
not uncommon, (l7.5-)l9.0-30.0(-32.0) pm (mean

24.1 ± 3.3 nn, n = 48) X (15.0-)16.5-26.5(-28.0)

pm (mean = 21.2 ± 2.9 pm). Ascospores (FIGS. 7, 8)

oblate, fine!y tuberculate with a thin equatorial
ridge, hyaline to pale brown, generally containing a
single large oil droplet, globose to broadly ellipsoidal
in face view, variable in size, (7.5-)8.0-12.3(-14.0)
pm (mean = 10.0 ± 0.9 pm, n = 100) X (7.0-)7.5-
12.0(-13.0) pm (mean = 9.3 ± 0.9 pm). Conidial

heads uniseriate or hiseriate, radiate to columnar, up
to 600 tm diam. Stipes (100-)300-1200(-2000) pm
long, 10-23 pm wide immediately below vesicle,
hyaline to pale brown, echinulate. Vesicles globose

to subglobose, 15-70 pm diam. Metuiae 6.0-10.0 X

4.0-7.5 p.m. Phialide.c 6.0-12.0 X 3.0-4.5 pm. Conidma
globose to subglohose, 3.0-6.0(-7.5) pm, smooth to
finely roughened.

Holotype. Dried slant culture with ascocarp-bearing
stromata consisting of A. Jiavus NRRI. 29473 (MA'! 'i-I)

crossed with A. flavu.s NRRL 29487 (MATI-2);

deposited with the National Fungus Collections, US
Department of Agriculture, Beltsville, Maryland (BPI
878851). NRRL 29473 was isolated from a peanut seed
harvested 14 Oct 1992 from a field in Terrell County,
Georgia, USA, and NRRL 29487 was isolated from soil
collected SJun 1992 from the same peanut field (Horn
and Greene 1995). Living cultures of both strains have
been deposited in the ARS Culture Collection, Peoria,
Illinois, USA.

Additional sexual crosses examined: All A. /lavns strains
were obtained from soil and peanut seeds as described for
the holotype. Additional crosses (iii order of MATI-1 X

MA 71-2) were: NRRL 29532 X 29506; NRRL 29.512 X

29506; NRRI, 29534 X 29506; NRRL 29473 X 29506; NRR[.

29518 X 29519; NRRL 29537 X 29474; NRRL 29507 X

29506; NRRL 29530 X 29519; NRRI. 29537 X 29536; NRRI.

29507 X 29487; NRRL 29526 X 29519.

DISCtSSIO>

The sexual state of A. Jiavus with its fortnalioii of
multiple, nonostiolate ascocarps within the pseudo-
parenchymatous matrix of stromata clearly places the
fungus in genus Petromnyces Malloch & Cain (1972).

Petromces Jiavus shares As/urgiilns section l"lavi with

two other sexually reproducing species, P. parasilicus

and P. ailiaceus. Morphological characters of the
teleomorph in this study were insufficient to clistiim-

guish P. flavus from P. parasiticus. Dimensions ol

sexual structures in I'.Jiavus were similar to those of

P. p(jraslticus (Horn et al 20091)) respectively for
stromata (300-1250 pm vs. 300-1200 pm), fertile
ascocarps (150-630 X 100-540 pin vs. 160-530 X

140-420 pm), asci (19.0-30.0 X 16.5-26.5 pm vs.
19.0-29.0 X 16.0-27.0 pm) and ascospores (8.0-12.5
)< 7.5-12.0 pm vs. 7.1-13.0 X 6.5-12.0 pm). Asco-
spores of both P. /iavus and P. parasiticus are oblate

and finely tuberculate and encircled by a thin
equatorial ridge. Although ascospore ornamentation
in P. Jiavus was often finer than that of P. iut,as11cus
under SEM, there was considerable overlap III the

coarseness of ornamentation and the character could
not unequivocally separate the two species. In
contrast the smooth and small (5.5-9.0 X 5.0-

7.0 pm) ascospores of P. aU,acems (Fennell and
Warcup 1959) distinguish this species from both P.

Jiavus and 1 1. /arasiticus.
The Asperm,rillus anamorphic states of P. /la.vusancl

P. parasiticus are easily separated morphologically.
Conidial heads of P. flavus when cultured on Czapek
agar are grayish green, whereas those of P. paraszticns
are dark green (Raper and Fennell 1963, Horn et al
1996, K!ich 2002). Furthermore conidia of P. Jlavus

under the light microscope are smooth to finely
roughenedi and those of P. parasiticus are coarsely
roughened (K!ich and Pitt 1988). The anainorphic
state of P. alliaceus differs markedly from both P.

flavus and P. parasiticus. Conidial heads of P.

alliaceus are yellow orange to cinnaiflOfl buff 'and
conidia are smooth and subglol)ose to oval and are
smaller (2.5-4.0 X 2.0-3.5 pm) than those of 1'. Jiavus

(3.0-6.0 pm) and P. parasiticu.s (4.0-6.0 pm) (Raper
and Fennel! 1963, K!ich 2002).

Petrornyces species also differ in their mycotoxin
profiles. Pet rum ce.c flavus produces aflatoxins B and
B9 and CPA, whereas P parasiticus produces aflatox-

ins B 1 , B2, G1 and G9 but not CPA (Hormi ct a! 1996).
However mycotoxin profiles are not entirely diagnos-
tic fbr species identification because many Strains of

P. flavus do not produce aflatoxins or CPA (I lorn
and Dorner 1999). Nonaflatoxigenic strains of P.

parasiticus are rare, and strains that do not produce
aflatoxins usually accumulate O-rnethylsterigmatocys-



HORN ET AL: A. iitrç sEXt.\t. R'gout(:tION
	

427

till, the immediate precursor to aflatoxin B 1 (I lorn et
al 1996). Petroi,ires (liliaceas does not produce
allatoxms but instead accumulates the nephrotoxic
and carcinogenic Il)vcotoXjli, ochratoxiti A (Bavman
et al 2002).

Molecular studies have verified the close relation-
ship between P. flavor and P. parasituus. Kurtzman et
al ( 986) first compared A. /iavus and A. parasiticits
at the molecular level with nuclear DNA compleincri-
taritv. Because of the relativel y high DNA homology
(70%) they considered A. flavus and A. Jiaiasilicus to
be conspccilic and designated A. parasitiruv as a
subspecies of A. Jiovus. Subsequent RFLP, AFI.P
fingerprint and DNA sequence analyses cleailv
differentiate A. flavus from A. ar(jsiticus, suggesting
they are distinct species (Moody and Tyler 1990a, b;
I.ec el al 2006; llarros ct al 2007; Peterson 2008).
Phylogenv within section Novi based oil DNA
sequences honi Jour loci (Peterson 2008) is correlat-
ed with morphological differences among Pelroinyrer
species. Pet romrces alliaceus is well separated from tile
A. /lavuy/A. parasilicus dade and differs markedly
from this Cade in both teleomorphic and anamor-
pine stales. In contrast the teleoniorplis of sibling
species P. /lavus and P. Jxirasi/icus are nearly identical
and the anamorphs differ in kw characters.
III macv P. Jiavus as a holoniorph is best

distinguished from 1'. parasi(ieus by anamorph
morpholog y, nl ycotoxin profile and molecular char-
acters. Field and laboratory observations also suggest
that P. flavus and P. parasilicu.c differ ecologically in
several respects. I'etrom)ces /iavus is the dominant
aflatoxin-producing species in the majorit y of crops
(Horn 2005a) . III P. arasUicus is more
rest ric ted in its crop speciflcitv and is most prevalent
in peanuts and uncommon in aerial crops such as
corn and cottonseed. Peanut pods develop under-
ground and are relatively cool compared to aerial
crops that often are exposed to direct sunlight; hence
the occurrence of P. parasiticu.c ill peanuts might be
due to its lower temperature optimum for invading
crops (I bitt 2005b). In addition P. /iavits is a
COn)lnoli agent for human aspergillosis, whereas
clinical cases involving P. arasi(icus have never been

rcpor	 nted (I leda a et at 2007).
Small inft'rtilc ascocarps frequently were observed

in stromata of P. flavus and also are present in P.
parasilicus (Horn et at 2009a) . Furthermore both
species show large differences among crosses in the
frequency of ascocarp and ascoSpore formation

(Horn et al 2009a, TAttLE: 11). Differences in R'rt ilitv
might be oiue to various prezvgotican(l post/vgotic
genetic barriers that override the sexual compatibility
system (Horn et at 2009a, h). In the present study all

A. limos crosses involved pairs of sexually compatible

strains belonging to different VC(; (T.ARtE I). Fertile
ascocarps also developed in 1. parasiticus stromata
When sexuall y compatible strains front different VCG
were crossed (Horn ci ii 2009a). Therefore the
vegetative compatibility system is not a harrier to
sexual reproduction iii either species.

The involvement of olifleremit VCG in P. flanius
crosses indicates that sexual reproduction is occur-
ring between strains that often differ in their capacity
to produce mycotoxins. Populations of P. flavus show
it high level of variation in tllvcotoxin production,
with individuals producing both aflatoxins and CPA,
aflatoxins alone, CPA alone or neither mvcotoxin
(Horn et at 1996, Horn and Dorncr 1999). Allatoxins
are synthesized by it characterized gene cluster
containing approximatel y 25 genes located in a 70 kb
telomeric region on chromosome 3 (Yu et at 2001,
Carbone et al 2007b) and CPA is thought to originate
from a gene niimiiclitster next to the allatoxin gene
cluster (Chang et al 2009) . The inabilit to produce
aflatoxins or CPA in P. Jlavus is often due to various
deletions in these gene clusters (Chang et al 2005,
2009). In closel y related 1. parariticus, distinct
recombination blocks have been identified it, the
aflatoxin gene cluster (Carbone et at 2007a) and
genetic recombination has been demonstrated (Horn
et al 2009a) . Therefore recombination during sexual
repioduct ion in P. /iavus might account for much of
the variation ill iii ycotoxin production observed in
populations.
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